Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.425
Filtrar
2.
Immunohorizons ; 6(12): 807-816, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480484

RESUMO

Circulating IgM present in the body prior to any apparent Ag exposure is referred to as natural IgM. Natural IgM provides protective immunity against a variety of pathogens. Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever in humans. Because mice are not permissive to S. Typhi infection, we employed a murine model of typhoid using S. enterica serovar Typhimurium expressing the Vi polysaccharide (ViPS) of S. Typhi (S. Typhimurium strain RC60) to evaluate the role of natural IgM in pathogenesis. We found that natural mouse IgM binds to S. Typhi and S. Typhimurium. The severity of S. Typhimurium infection in mice is dependent on presence of the natural resistance-associated macrophage protein 1 (Nramp1) allele; therefore, we infected mice deficient in secreted form of IgM (sIgM) on either a Nramp1-resistant (129S) or -susceptible (C57BL/6J) background. We found that the lack of natural IgM results in a significantly increased susceptibility and an exaggerated liver pathology regardless of the route of infection or the Nramp1 allele. Reconstitution of sIgM-/- mice with normal mouse serum or purified polyclonal IgM restored the resistance to that of sIgM+/+ mice. Furthermore, immunization of sIgM-/- mice with heat-killed S. Typhi induced a significantly reduced anti-ViPS IgG and complement-dependent bactericidal activity against S. Typhi in vitro, compared with that of sIgM+/+ mice. These findings indicate that natural IgM is an important factor in reducing the typhoid severity and inducing an optimal anti-ViPS IgG response to vaccination.


Assuntos
Imunoglobulina G , Imunoglobulina M , Polissacarídeos Bacterianos , Febre Tifoide , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Imunoglobulina G/imunologia , Camundongos Endogâmicos C57BL , Febre Tifoide/imunologia , Suscetibilidade a Doenças , Formação de Anticorpos , Camundongos da Linhagem 129 , Polissacarídeos Bacterianos/imunologia
3.
Immunol Lett ; 241: 49-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942191

RESUMO

Prohibitin is a highly conserved ubiquitously expressed protein involved in several key cellular functions. Targeting of this protein in the membrane by the virulence polysaccharide, Vi, of human typhoid-causing pathogen, Salmonella enterica serovar Typhi (S. Typhi), results in suppression of IL-2 secretion from T cells activated through the T-cell receptor (TCR). However, the mechanism of this suppression remains unclear. Here, using Vi as a probe, we show that membrane prohibitin associates with the src-tyrosine kinase, p56lck (Lck), and actin in human model T cell line, Jurkat. Activation with anti-CD3 antibody brings about dissociation of this complex, which coincides with downstream ERK activation. The trimolecular complex reappears towards culmination of proximal TCR signaling. Engagement of cells with Vi prevents TCR-triggered activation of Lck and ERK by inhibiting dissociation of the former from prohibitin. These findings suggest a regulatory role for membrane prohibitin in Lck activation and TCR signaling.


Assuntos
Membrana Celular/metabolismo , Complexos Multiproteicos/metabolismo , Proibitinas/metabolismo , Salmonella typhi/patogenicidade , Linfócitos T/fisiologia , Actinas/metabolismo , Humanos , Terapia de Imunossupressão , Células Jurkat , Ativação Linfocitária , Polissacarídeos Bacterianos/imunologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Fatores de Virulência/imunologia
4.
Angew Chem Int Ed Engl ; 61(11): e202115342, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935243

RESUMO

Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500 000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this Review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.


Assuntos
Vacinas Bacterianas/imunologia , Polissacarídeos Bacterianos/imunologia , Streptococcus pyogenes/imunologia , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/síntese química , Vacinas Bacterianas/química , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/química
5.
J Biol Chem ; 298(1): 101453, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838818

RESUMO

In the preparation of commercial conjugate vaccines, capsular polysaccharides (CPSs) must undergo chemical modification to generate the reactive groups necessary for covalent attachment to a protein carrier. One of the most common approaches employed for this derivatization is sodium periodate (NaIO4) oxidation of vicinal diols found within CPS structures. This procedure is largely random and structurally damaging, potentially resulting in significant changes in the CPS structure and therefore its antigenicity. Additionally, periodate activation of CPS often gives rise to heterogeneous conjugate vaccine products with variable efficacy. Here, we explore the use of an alternative agent, galactose oxidase (GOase) isolated from Fusarium sp. in a chemoenzymatic approach to generate a conjugate vaccine against Streptococcus pneumoniae. Using a colorimetric assay and NMR spectroscopy, we found that GOase generated aldehyde motifs on the CPS of S. pneumoniae serotype 14 (Pn14p) in a site-specific and reversible fashion. Direct comparison of Pn14p derivatized by either GOase or NaIO4 illustrates the functionally deleterious role chemical oxidation can have on CPS structures. Immunization with the conjugate synthesized using GOase provided a markedly improved humoral response over the traditional periodate-oxidized group. Further, functional protection was validated in vitro by measure of opsonophagocytic killing and in vivo through a lethality challenge in mice. Overall, this work introduces a strategy for glycoconjugate development that overcomes limitations previously known to play a role in the current approach of vaccine design.


Assuntos
Galactose Oxidase , Vacinas Pneumocócicas , Polissacarídeos Bacterianos , Streptococcus pneumoniae , Animais , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Galactose Oxidase/química , Galactose Oxidase/imunologia , Galactose Oxidase/metabolismo , Glicoconjugados , Camundongos , Vacinas Pneumocócicas/química , Vacinas Pneumocócicas/imunologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Sorogrupo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas
6.
Infect Immun ; 90(1): e0032121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34606367

RESUMO

The gut microbiota has emerged as a critical player in host health. Bacteroides fragilis is a prominent member of the gut microbiota within the phyla Bacteroidetes. This commensal bacterium produces unique capsular polysaccharides processed by antigen-presenting cells and activates CD4+ T cells to secrete inflammatory cytokines. Indeed, due to their immunomodulatory functions, B. fragilis and its capsular polysaccharide-A (PSA) are arguably the most explored single commensal microbiota/symbiotic factor. B. fragilis/PSA has been shown to protect against colitis, encephalomyelitis, colorectal cancer, pulmonary inflammation, and asthma. Here, we review recent data on the immunomodulatory role of B. fragilis/PSA during viral infections and therapy, B. fragilis PSA's dual ability to mediate pro-and anti-inflammatory processes, and the potential for exploring this unique characteristic during intracellular bacterial infections such as with Mycobacterium tuberculosis. We also discuss the protective roles of single commensal-derived probiotic species, including B. fragilis in lung inflammation and respiratory infections that may provide essential cues for possible exploration of microbiota based/augmented therapies in tuberculosis (TB). Available data on the relationship between B. fragilis/PSA, the immune system, and disease suggest clinical relevance for developing B. fragilis into a next-generation probiotic or, possibly, the engineering of PSA into a potent carbohydrate-based vaccine.


Assuntos
Bacteroides fragilis/fisiologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Interações Microbianas , Viroses/etiologia , Viroses/terapia , Antibiose , Citocinas/metabolismo , Gerenciamento Clínico , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Interferons/metabolismo , Especificidade de Órgãos , Polissacarídeos Bacterianos/imunologia , Probióticos , Simbiose , Tuberculose/etiologia , Viroses/metabolismo
7.
Microbiol Spectr ; 9(3): e0115021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878302

RESUMO

The goal of this study was to investigate the distribution of serotypes and clonal composition of Streptococcus pneumoniae isolates causing invasive pneumococcal disease (IPD) in Catalonia, before and after systematic introduction of PCV13. Pneumococcal strains isolated from normally sterile sites obtained from patients of all ages with IPD received between 2013 and 2019 from 25 health centers of Catalonia were included. Two study periods were defined: presystematic vaccination period (2013 and 2015) and systematic vaccination period (SVP) (2017 to 2019). A total of 2,303 isolates were analyzed. In the SVP, there was a significant decrease in the incidence of IPD cases in children 5 to 17 years old (relative risk [RR] 0.61; 95% confidence interval [CI] 0.38 to 0.99), while there was a significant increase in the incidence of IPD cases in 18- to 64-year-old adults (RR 1.33; 95% CI 1.16 to 1.52) and adults over 65 years old (RR 1.23; 95% CI 1.09 to 1.38). Serotype 8 was the major emerging serotype in all age groups except in 5- to 17-year-old children. In children younger than 5 years old, the main serotypes in SVP were 24F, 15A, and 3, while in adults older than 65 years they were serotypes 3, 8, and 12F. A significant decrease in the proportions of clonal complexes CC156, CC191, and ST306 and an increase in those of CC180, CC53, and CC404 were observed. A steady decrease in the incidence of IPD caused by PCV13 serotypes indicates the importance and impact of systematic vaccination. The increase of non-PCV13 serotypes highlights the need to expand serotype coverage in future vaccines and rethink vaccination programs for older adults. IMPORTANCE We found that with the incorporation of the PCV13 vaccine, the numbers of IPD cases caused by serotypes included in this vaccine decreased in all of the age groups. Still, there was an unforeseen increase of the serotypes not included in this vaccine causing IPD, especially in the >65-year-old group. Moreover, a significant increase of serotype 3 included in the vaccine has been observed; this event has been reported by other researchers. These facts call for the incorporation of more serotypes in future vaccines and a more thorough surveillance of the dynamics of this microorganism.


Assuntos
Infecções Pneumocócicas/epidemiologia , Vacinas Pneumocócicas/imunologia , Sorogrupo , Streptococcus pneumoniae/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Infecções Pneumocócicas/prevenção & controle , Polissacarídeos Bacterianos/imunologia , Espanha/epidemiologia , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Vacinação , Adulto Jovem
8.
Microbiol Spectr ; 9(3): e0144621, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756090

RESUMO

The current pneumococcal capsular polysaccharide (PPS) conjugate vaccine (PCV13) is less effective against Streptococcus pneumoniae serotype 3 (ST3), which remains a major cause of pneumococcal disease and mortality. Therefore, dissecting structure-function relationships of human ST3 pneumococcal capsular polysaccharide (PPS3) antibodies may reveal characteristics of protective antibodies. Using flow cytometry, we isolated PPS3-binding memory B cells from pneumococcal vaccine recipients and generated seven PPS3-specific human monoclonal antibodies (humAbs). Five humAbs displayed ST3 opsonophagocytic activity, four induced ST3 agglutination in vitro, and four mediated both activities. Two humAbs, namely, C10 and C27, that used the same variable heavy (VH) and light (VL) chain domains (VH3-9*01/VL2-14*03) both altered ST3 gene expression in vitro; however, C10 had fewer VL somatic mutations, higher PPS3 affinity, and promoted in vitro ST3 opsonophagocytic and agglutinating activity, whereas C27 did not. In C57BL/6 mice, both humAbs reduced nasopharyngeal colonization with ST3 A66 and a clinical strain, B2, and prolonged survival following lethal A66 intraperitoneal infection, but only C10 protected against lethal intranasal infection with the clinical strain. After performing VL swaps, C10VH/C27VL exhibited reduced ST3 binding and agglutination, but C27VH/C10VL binding was unchanged. However, both humAbs lost the ability to reduce colonization in vivo when their light chains were replaced. Our findings associate the ability of PPS3-specific humAbs to reduce colonization with ST3 agglutination and opsonophagocytic activity, and reveal an unexpected role for the VL in their functional activity in vitro and in vivo. These findings also provide insights that may inform antibody-based therapy and identification of surrogates of vaccine efficacy against ST3. IMPORTANCE Despite the global success of vaccination with pneumococcal conjugate vaccines, serotype 3 (ST3) pneumococcus remains a leading cause of morbidity and mortality. In comparison to other vaccine-included serotypes, the ST3 pneumococcal capsular polysaccharide (PPS3) induces a weaker opsonophagocytic response, which is considered a correlate of vaccine efficacy. Previous studies of mouse PPS3 monoclonal antibodies identified ST3 agglutination as a correlate of reduced ST3 nasopharyngeal colonization in mice; however, neither the agglutinating ability of human vaccine-elicited PPS3 antibodies nor their ability to prevent experimental murine nasopharyngeal colonization has been studied. We generated and analyzed the functional and in vivo efficacy of human vaccine-elicited PPS3 monoclonal antibodies and found that ST3 agglutination associated with antibody affinity, protection in vivo, and limited somatic mutations in the light chain variable region. These findings provide new insights that may inform the development of antibody-based therapies and next-generation vaccines for ST3.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Cápsulas Bacterianas/imunologia , Polissacarídeos Bacterianos/imunologia , Streptococcus pneumoniae/imunologia , Animais , Afinidade de Anticorpos/imunologia , Linhagem Celular , Feminino , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nasofaringe/imunologia , Nasofaringe/microbiologia , Opsonização/imunologia , Vacinas Pneumocócicas/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/mortalidade , Sorogrupo , Anticorpos de Cadeia Única/imunologia , Streptococcus pneumoniae/classificação , Eficácia de Vacinas
9.
Sci Rep ; 11(1): 22037, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764353

RESUMO

Conjugate vaccine platform is a promising strategy to overcome the poor immunogenicity of bacterial polysaccharide antigens in infants and children. A carrier protein in conjugate vaccines works not only as an immune stimulator to polysaccharide, but also as an immunogen; with the latter generally not considered as a measured outcome in real world. Here, we probed the potential of a conjugate vaccine platform to induce enhanced immunogenicity of a truncated rotavirus spike protein ΔVP8*. ΔVP8* was covalently conjugated to Vi capsular polysaccharide (Vi) of Salmonella Typhi to develop a bivalent vaccine, termed Vi-ΔVP8*. Our results demonstrated that the Vi-ΔVP8* vaccine can induce specific immune responses against both antigens in immunized mice. The conjugate vaccine elicits high antibody titers and functional antibodies against S. Typhi and Rotavirus (RV) when compared to immunization with a single antigen. Together, these results indicate that Vi-ΔVP8* is a potent and immunogenic vaccine candidate, thus strengthening the potential of conjugate vaccine platform with enhanced immune responses to carrier protein, including ΔVP8*.


Assuntos
Infecções por Rotavirus/prevenção & controle , Rotavirus/imunologia , Salmonella typhi/imunologia , Febre Tifoide/prevenção & controle , Vacinas Combinadas/imunologia , Vacinas Conjugadas/imunologia , Proteínas Virais/imunologia , Animais , Humanos , Imunização , Camundongos , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/farmacologia , Infecções por Rotavirus/imunologia , Febre Tifoide/imunologia , Vacinas Combinadas/farmacologia , Vacinas Conjugadas/farmacologia , Proteínas Virais/farmacologia
10.
Front Immunol ; 12: 719315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594333

RESUMO

Nanoparticle systems are being explored for the display of carbohydrate antigens, characterized by multimeric presentation of glycan epitopes and special chemico-physical properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are receiving great attention, combining antigen presentation with the immunopotentiator effect of the Toll-like receptor agonists naturally present on these systems. In this context, we are testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides. Here, we investigated the impact of saccharide length, density, and attachment site on the immune response elicited by GMMA in animal models, using a variety of structurally diverse polysaccharides from different pathogens (i.e., Neisseria meningitidis serogroup A and C, Haemophilus influenzae type b, and streptococcus Group A Carbohydrate and Salmonella Typhi Vi). Anti-polysaccharide immune response was not affected by the number of saccharides per GMMA particle. However, lower saccharide loading can better preserve the immunogenicity of GMMA as antigen. In contrast, saccharide length needs to be optimized for each specific antigen. Interestingly, GMMA conjugates induced strong functional immune response even when the polysaccharides were linked to sugars on GMMA. We also verified that GMMA conjugates elicit a T-dependent humoral immune response to polysaccharides that is strictly dependent on the nature of the polysaccharide. The results obtained are important to design novel glycoconjugate vaccines using GMMA as carrier and support the development of multicomponent glycoconjugate vaccines where GMMA can play the dual role of carrier and antigen. In addition, this work provides significant insights into the mechanism of action of glycoconjugates.


Assuntos
Antígenos de Bactérias/imunologia , Membrana Celular/imunologia , Glicoconjugados/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Antígenos de Bactérias/química , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Membrana Celular/química , Feminino , Glicoconjugados/química , Imunidade , Camundongos , Modelos Animais , Polissacarídeos Bacterianos/química , Salmonella typhimurium/imunologia , Vacinas/química , Vacinas/imunologia
11.
Infect Immun ; 89(12): e0029221, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543125

RESUMO

Group A Streptococcus (GAS) is a preeminent human bacterial pathogen causing hundreds of millions of infections each year worldwide. In the clinical setting, the bacterium is easily identified by a rapid antigen test against the group A carbohydrate (GAC), a polysaccharide that comprises 30 to 50% of the GAS cell wall by weight. Originally described by Rebecca Lancefield in the 1930s, GAC consists of a polyrhamnose backbone and a N-acetylglucosamine (GlcNAc) side chain. This side chain, the species-defining immunodominant antigen, is potentially implicated in autoreactive immune responses against human heart or brain tissue in poststreptococcal rheumatic fever or rheumatic heart disease. The recent discovery of the genetic locus encoding GAC biosynthesis and new insights into its chemical structure have provided novel insights into the assembly of the polysaccharide, its contribution to immune evasion and virulence, and ideas for safely harnessing its natural immunogenicity in vaccine design. This minireview serves to summarize the emerging new literature on GAC, the eponymous cell well antigen that provides structural integrity to GAS and directly interfaces with host innate and adaptive immune responses.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Antígenos de Bactérias/imunologia , Suscetibilidade a Doenças , Humanos , Imunidade , Infecções Estreptocócicas/prevenção & controle , Virulência , Fatores de Virulência
12.
Infect Immun ; 89(11): e0043821, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34424751

RESUMO

All clinical Clostridioides difficile strains identified to date express a surface capsule-like polysaccharide structure known as polysaccharide II (PSII). The PSII antigen is immunogenic and, when conjugated to a protein carrier, induces a protective antibody response in animal models. Given that CD1d-restricted natural killer T (NKT) cells promote antibody responses, including those against carbohydrates, we tested the hypothesis that immunization with PSII and a CD1d-binding glycolipid adjuvant could lead to enhanced protection against a live C. difficile challenge. We purified PSII from a clinical isolate of C. difficile and immunized B6 mice with PSII alone or PSII plus the CD1d-binding glycolipid α-galactosylceramide (α-GC). PSII-specific IgM and IgG titers were evident in sera from immunized mice. The inclusion of α-GC had a modest influence on isotype switch but increased the IgG1/IgG2c ratio. Enhanced protection against C. difficile disease was achieved by inclusion of the α-GC ligand and was associated with reduced bacterial numbers in fecal pellets. In contrast, NKT-deficient Traj18-/- mice were not protected by the PSII/α-GC immunization modality. Absence of NKT cells similarly had a modest effect on isotype switch, but ratios of IgG1/IgG2c decreased. These results indicate that α-GC-driven NKT cells move the humoral immune response against C. difficile PSII antigen toward Th2-driven IgG1 and may contribute to augmented protection. This study suggests that NKT activation represents a pathway for additional B-cell help that could be used to supplement existing efforts to develop vaccines against polysaccharides derived from C. difficile and other pathogens.


Assuntos
Antígenos de Bactérias/imunologia , Clostridioides difficile/imunologia , Galactosilceramidas/imunologia , Imunoglobulina G/sangue , Células T Matadoras Naturais/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Imunização , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
13.
Int J Med Sci ; 18(12): 2666-2672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104099

RESUMO

Bacterial biofilm (dental plaque) plays a key role in caries etiopathogenesis and chronic periodontitis in humans. Dental plaque formation is determined by exopolysaccharides (EPSs) produced by cariogenic and periopathogenic bacteria. The most frequent cariogenic bacteria include oral streptococci (in particular S. mutans) and lactobacilli (most frequently L. acidophilus). In turn, the dominant periopathogen in periodontitis is Porphyromonas gingivalis. Development of dental caries is often accompanied with gingivitis constituting the mildest form of periodontal disease. Basic cellular components of the gingiva tissue are fibroblasts the damage of which determines the progression of chronic periodontitis. Due to insufficient knowledge of the direct effect of dental plaque on metabolic activity of the fibroblasts, this work analyses the effect of EPSs produced by S. mutans and L. acidophilus strains (H2O2-producing and H2O2-not producing) on ATP levels in human gingival fibroblasts (HGF-1) and their viability. EPSs produced in 48-hours bacterial cultures were isolated by precipitation method and quantitatively determined by phenol - sulphuric acid assay. ATP levels in HGF-1 were evaluated using a luminescence test, and cell viability was estimated using fluorescence test. The tests have proven that EPS from S. mutans did not affect the levels of ATP in HGF-1. Whereas EPS derived from L. acidophilus strains, irrespective of the tested strain, significantly increased ATP levels in HGF-1. The analysed EPSs did not affect the viability of cells. The tests presented in this work show that EPSs from cariogenic bacteria have no cytotoxic effect on HGF-1. At the same time, the results provide new data indicating that EPSs from selected oral lactobacilli may have stimulating effect on the synthesis of ATP in gingival fibroblasts which increases their energetic potential and takes a protective effect.


Assuntos
Trifosfato de Adenosina/metabolismo , Cárie Dentária/microbiologia , Fibroblastos/imunologia , Gengivite/imunologia , Polissacarídeos Bacterianos/imunologia , Trifosfato de Adenosina/análise , Biofilmes , Linhagem Celular , Cárie Dentária/imunologia , Fibroblastos/metabolismo , Gengiva/citologia , Gengiva/imunologia , Gengiva/microbiologia , Gengivite/microbiologia , Humanos , Lactobacillus acidophilus/imunologia , Lactobacillus acidophilus/metabolismo , Polissacarídeos Bacterianos/metabolismo , Streptococcus mutans/imunologia , Streptococcus mutans/metabolismo
14.
Int J Infect Dis ; 108: 465-472, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082090

RESUMO

OBJECTIVES: In 2017, the World Health Organisation (WHO) pre-qualified a single-dose typhoid conjugate vaccine (TCV) and identified TCV co-administration studies as a research priority. Accordingly, we tested co-administration of Typbar TCV® (Bharat Biotech International) with measles-rubella (MR) and yellow fever (YF) vaccines. METHODS: We conducted a randomized, double-blind, and controlled, phase 2 trial in Ouagadougou, Burkina Faso. Healthy children aged 9-11 months were randomized 1:1 to receive TCV (Group 1) or control vaccine (inactivated polio vaccine (IPV), Group 2). Vaccines were administered intramuscularly with routine MR and YF vaccines. Safety was assessed by (1) local and systemic reactions on days 0, 3, and 7; (2) unsolicited adverse events within 28 days; and (3) serious adverse events (SAEs) within six months after immunization. RESULTS: We enrolled, randomized, and vaccinated 100 eligible children (49 Group 1 and 51 Group 2). Safety outcomes occurred with similar frequency in both groups: local/solicited reactions (Group 1: 1/49, Group 2: 3/50), systemic/solicited reactions (Group 1: 4/49, Group 2: 9/50), unsolicited adverse events (Group 1: 26/49, Group 2: 33/51), and SAEs (Group 1: 2/49, Group 2: 3/51). TCV conferred robust immunogenicity without interference with MR or YF vaccines. CONCLUSION: TCV can be safely co-administered with MR and YF vaccines to children at the 9-month vaccination visit.


Assuntos
Polissacarídeos Bacterianos/efeitos adversos , Vacinas Tíficas-Paratíficas/efeitos adversos , Burkina Faso , Método Duplo-Cego , Feminino , Humanos , Lactente , Masculino , Vacina contra Sarampo/administração & dosagem , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/imunologia , Vacina contra Rubéola/administração & dosagem , Vacinas Tíficas-Paratíficas/administração & dosagem , Vacinas Tíficas-Paratíficas/imunologia , Vacinas Conjugadas/efeitos adversos , Vacinas Conjugadas/imunologia , Vacina contra Febre Amarela/administração & dosagem
15.
mBio ; 12(3): e0080021, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061603

RESUMO

Capsular polysaccharides (CPSs) are major virulence factors that decorate the surfaces of many human bacterial pathogens. In their pure form or as glycoconjugate vaccines, CPSs are extensively used in vaccines deployed in clinical practice worldwide. However, our understanding of the structural requirements for interactions between CPSs and antibodies is limited. A longstanding model based on comprehensive observations of antibody repertoires binding to CPSs is that antibodies expressing heavy chain variable gene family 3 (VH3) predominate in these binding interactions in humans and VH3 homologs in mice. Toward understanding this highly conserved interaction, we generated a panel of mouse monoclonal antibodies (MAb) against Streptococcus pneumoniae serotype 3 CPS, determined an X-ray crystal structure of a protective MAb in complex with a hexasaccharide derived from enzymatic hydrolysis of the polysaccharide, and elucidated the structural requirements for this binding interaction. The crystal structure revealed a binding pocket containing aromatic side chains, suggesting the importance of hydrophobicity in the interaction. Through mutational analysis, we determined the amino acids that are critical in carbohydrate binding. Through elucidating the structural and functional properties of a panel of murine MAbs, we offer an explanation for the predominant use of the human VH3 gene family in antibodies against CPSs with implications in knowledge-based vaccine design. IMPORTANCE Infectious diseases caused by pathogenic bacteria are a major threat to human health. Capsular polysaccharides (CPSs) of many pathogenic bacteria have been used as the main components of glycoconjugate vaccines against bacterial diseases in clinical practice worldwide, with various degrees of success. Immunization with a glycoconjugate vaccine elicits T cell help for B cells that produce IgG antibodies to the CPS. Thus, it is important to develop an in-depth understanding of the interactions of carbohydrate epitopes with the antibodies. Structural characterization of the ligand binding of polysaccharide-specific antibodies laid out in this study may have fundamental biological implications for our comprehension of how the humoral immune system recognizes polysaccharide antigens, and in future knowledge-based vaccine design.


Assuntos
Anticorpos Antibacterianos/imunologia , Cápsulas Bacterianas/química , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Monoclonais , Cápsulas Bacterianas/classificação , Cápsulas Bacterianas/imunologia , Cristalização , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Modelos Estruturais , Polissacarídeos Bacterianos/química , Sorogrupo , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/patogenicidade , Vacinação
16.
Glycoconj J ; 38(4): 447-457, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33956253

RESUMO

The capsular polysaccharide of the human pathogen Group B Streptococcus is a key virulence factor and vaccine candidate that induces protective antibodies when conjugated to carrier proteins. It consists of long polymeric chains of oligosaccharide repeating units, and each of the ten capsular serotypes described so far presents a unique chemical structure with distinct antigenic properties; therefore, broad protection against this pathogen could be achieved by a combination of ten glycoconjugates. Capsular polysaccharide biosynthesis and assembly follow a polymerase-dependent pathway that is widespread in encapsulated bacteria and is encoded by a polycistronic operon. Here we exploited the sequence similarity between the capsule operons of types V and IX to generate hybrid polysaccharides incorporating epitopes of both serotypes in a single molecule, by co-expressing their specific CpsM, O, I glycosyltransferases in a single isolate. Physicochemical and immunochemical methods confirmed that an engineered strain produced a high molecular weight chimeric polysaccharide, combining antigenic specificities of both type V and IX. By optimizing the copy number of key glycosyltransferase genes, we were able to modulate the ratio between type-specific epitopes. Finally, vaccination with chimeric glycoconjugates significantly decreased the incidence of disease in pups born from immunized mice challenged with either serotype. This study provides proof of concept for a new generation of glycoconjugate vaccines that combine the antigenic specificity of different polysaccharide variants in a single molecule, eliciting a protective immune response against multiple serotype variants.


Assuntos
Cápsulas Bacterianas/imunologia , Polissacarídeos Bacterianos/imunologia , Vacinas Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Vacinas Combinadas/imunologia , Animais , Anticorpos Monoclonais , Proteínas de Bactérias/imunologia , Feminino , Engenharia Genética , Glicoconjugados , Humanos , Imunidade Materno-Adquirida , Camundongos
17.
Front Immunol ; 12: 607178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959120

RESUMO

The spread of infectious diseases is rampant. The emergence of new infections, the irrational use of antibiotics in medicine and their widespread use in agriculture contribute to the emergence of microorganisms that are resistant to antimicrobial drugs. By 2050, mortality from antibiotic-resistant strains of bacteria is projected to increase up to 10 million people per year, which will exceed mortality from cancer. Mutations in bacteria and viruses are occurring faster than new drugs and vaccines are being introduced to the market. In search of effective protection against infections, new strategies and approaches are being developed, one of which is the use of innate immunity activators in combination with etiotropic chemotherapy drugs. Muramyl peptides, which are part of peptidoglycan of cell walls of all known bacteria, regularly formed in the body during the breakdown of microflora and considered to be natural regulators of immunity. Their interaction with intracellular receptors launches a sequence of processes that ultimately leads to the increased expression of genes of MHC molecules, pro-inflammatory mediators, cytokines and their soluble and membrane-associated receptors. As a result, all subpopulations of immunocompetent cells are activated: macrophages and dendritic cells, neutrophils, T-, B- lymphocytes and natural killer cells for an adequate response to foreign or transformed antigens, manifested both in the regulation of the inflammatory response and in providing immunological tolerance. Muramyl peptides take part in the process of hematopoiesis, stimulating production of colony-stimulating factors, which is the basis for their use in the treatment of oncological diseases. In this review we highlight clinical trials of drugs based on muramyl peptides, as well as clinical efficacy of drugs mifamurtide, lycopid, liasten and polimuramil. Such a multifactorial effect of muramyl peptides and a well-known mechanism of activity make them promising drugs in the treatment and preventing of infectious, allergic and oncological diseases, and in the composition of vaccines.


Assuntos
Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/efeitos dos fármacos , Imunomodulação , Peptidoglicano/farmacologia , Animais , Ensaios Clínicos como Assunto , Desenvolvimento de Medicamentos , História do Século XX , História do Século XXI , Humanos , Monossacarídeos/química , Monossacarídeos/imunologia , Peptidoglicano/química , Peptidoglicano/imunologia , Peptidoglicano/uso terapêutico , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/uso terapêutico , Pesquisa/história , Relação Estrutura-Atividade , Resultado do Tratamento
18.
Front Immunol ; 12: 676488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953733

RESUMO

Recent studies have identified a clinical isolate of the commensal Streptococcus mitis that expresses Streptococcus pneumoniae serotype 5 capsule (S. mitis serotype 5) and shows serospecificity toward pneumococcal serotype 5. However, it remains unknown whether S. mitis serotype 5 induces protective immunity against pneumococcal serotype 5. In this study, we evaluated the ability of S. mitis serotype 5 to generate protective immunity in a mouse model of lung infection with pneumococcal serotype 5. Upon challenge infection with S. pneumoniae serotype 5, mice intranasally immunized with S. mitis serotype 5 exhibited reduced pneumococcal loads in the lungs, nasal wash, and bronchoalveolar lavage fluid compared with those receiving PBS (control). The immunized mice displayed significantly higher levels of IgG and IgA antibodies reactive to S. mitis serotype 5, S. pneumoniae serotype 5 or S. pneumoniae serotype 4 than the antibody levels in control mice. In vaccinated mice, the IgG/IgA antibody levels reactive to S. mitis serotype 5 or S. pneumoniae serotype 5 were higher than the levels reactive to S. pneumoniae serotype 4. Furthermore, in-vitro restimulation of the lung-draining mediastinal lymph node cells and splenocytes from immunized mice with killed S. mitis serotype 5, S. pneumoniae serotype 5 or S. pneumoniae serotype 4 showed enhanced Th17, but not Th1 and Th2, responses. Overall, our findings show that mucosal immunization with S. mitis serotype 5 protects against S. pneumoniae serotype 5 infection and induces Th17 and predominant serotype-specific IgG/IgA antibody responses against pneumococcal infection.


Assuntos
Imunidade nas Mucosas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Vacinas Pneumocócicas/administração & dosagem , Pneumonia Pneumocócica/prevenção & controle , Polissacarídeos Bacterianos/imunologia , Sorogrupo , Streptococcus mitis/imunologia , Streptococcus pneumoniae/imunologia , Células Th17/imunologia , Vacinação/métodos , Administração Intranasal , Animais , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Vacinas Pneumocócicas/imunologia , Pneumonia Pneumocócica/microbiologia , Resultado do Tratamento
19.
Front Immunol ; 12: 662362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981308

RESUMO

Psoriasis is a recurrent autoimmune skin disease with aberrant regulation of keratinocytes and immunocytes. There is no universally accepted single treatment available for psoriasis, and the establishment of a common treatment option to control its signs and symptoms is urgently needed. Here, we found Ebosin, a novel exopolysaccharide isolated from Streptomyces sp. 139 by our lab, not only could ameliorate inflammation in LPS-induced keratinocytes through IKK/NF-kapaB pathway, but also attenuate psoriatic skin lesions and reduce inflammatory factors expression in imiquimod (IMQ)-mediated psoriatic mice. Except for inhibiting the expression of epidermal differentiation related proteins, Ebosin significantly increased the percentage of CD4+Foxp3+CD25+ Tregs and decreased CD4+IL17A+ Th17 cells in psoriatic mice. Furthermore, we demonstrate that Ebosin significantly suppressed the IL-17 signaling pathway via A20 (encoded by tnfaip3) in vivo. As the direct binding of tnfaip3 to miR-155 has been demonstrated by luciferase reporter assay, and Ebosin has been demonstrated to inhibit miR-155 level in vitro and in vivo, our study first indicates that Ebosin reduces inflammation through the miR-155-tnfaip3-IL-17 axis and T cell differentiation in a psoriasis-like model. Thus, we conclude that Ebosin can act as a promising therapeutic candidate for the treatment of psoriasis.


Assuntos
Inflamação/prevenção & controle , Interleucina-17/metabolismo , MicroRNAs/metabolismo , Polissacarídeos Bacterianos/administração & dosagem , Psoríase/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Células HaCaT , Humanos , Inflamação/tratamento farmacológico , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/imunologia , Polissacarídeos Bacterianos/imunologia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Transdução de Sinais/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia
20.
Front Immunol ; 12: 662807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025663

RESUMO

The symbiotic relationship between animals and their resident microorganisms has profound effects on host immunity. The human microbiota comprises bacteria that reside in the gastrointestinal tract and are involved in a range of inflammatory and autoimmune diseases. The gut microbiota's immunomodulatory effects extend to extraintestinal tissues, including the central nervous system (CNS). Specific symbiotic antigens responsible for inducing immunoregulation have been isolated from different bacterial species. Polysaccharide A (PSA) of Bacteroides fragilis is an archetypical molecule for host-microbiota interactions. Studies have shown that PSA has beneficial effects in experimental disease models, including experimental autoimmune encephalomyelitis (EAE), the most widely used animal model for multiple sclerosis (MS). Furthermore, in vitro stimulation with PSA promotes an immunomodulatory phenotype in human T cells isolated from healthy and MS donors. In this review, we discuss the current understanding of the interactions between gut microbiota and the host in the context of CNS inflammatory demyelination, the immunomodulatory roles of gut symbionts. More specifically, we also discuss the immunomodulatory effects of B. fragilis PSA in the gut-brain axis and its therapeutic potential in MS. Elucidation of the molecular mechanisms responsible for the microbiota's impact on host physiology offers tremendous promise for discovering new therapies.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/metabolismo , Suscetibilidade a Doenças , Retroalimentação Fisiológica , Trato Gastrointestinal/metabolismo , Animais , Bacteroides fragilis/imunologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Imunomodulação , Polissacarídeos Bacterianos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...